Matrix product states algorithms and continuous systems
نویسندگان
چکیده
منابع مشابه
Continuous matrix product states for quantum fields.
We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows us to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.
متن کاملMatrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In t...
متن کاملVariational optimization algorithms for uniform matrix product states
We combine the Density Matrix Renormalization Group (DMRG) with Matrix Product State tangent space concepts to construct a variational algorithm for finding ground states of one dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform Matrix Product State algorithm (VUMPS) with infinite Density Matrix Renormalization Group (IDMRG) and with infini...
متن کاملStochastic matrix product states.
The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows us to define the analogue of Schmidt coefficients for steady states of nonequilibrium stochastic processes. We discuss a new measure for correlations which is analogous to entanglement entropy, the entropy cost S(C), and show that this measure quantifies the bond dimension nee...
متن کاملS matrix from matrix product states.
We use the matrix product state formalism to construct stationary scattering states of elementary excitations in generic one-dimensional quantum lattice systems. Our method is applied to the spin-1 Heisenberg antiferromagnet, for which we calculate the full magnon-magnon S matrix for arbitrary momenta and spin, the two-particle contribution to the spectral function, and higher order corrections...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.75.104305